3.402 \(\int \frac{(1-c^2 x^2)^{5/2}}{(a+b \sin ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=217 \[ \frac{15 \sin \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{16 b^2 c}+\frac{3 \sin \left (\frac{4 a}{b}\right ) \text{CosIntegral}\left (\frac{4 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{4 b^2 c}+\frac{3 \sin \left (\frac{6 a}{b}\right ) \text{CosIntegral}\left (\frac{6 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{16 b^2 c}-\frac{15 \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{16 b^2 c}-\frac{3 \cos \left (\frac{4 a}{b}\right ) \text{Si}\left (\frac{4 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{4 b^2 c}-\frac{3 \cos \left (\frac{6 a}{b}\right ) \text{Si}\left (\frac{6 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{16 b^2 c}-\frac{\left (1-c^2 x^2\right )^3}{b c \left (a+b \sin ^{-1}(c x)\right )} \]

[Out]

-((1 - c^2*x^2)^3/(b*c*(a + b*ArcSin[c*x]))) + (15*CosIntegral[(2*(a + b*ArcSin[c*x]))/b]*Sin[(2*a)/b])/(16*b^
2*c) + (3*CosIntegral[(4*(a + b*ArcSin[c*x]))/b]*Sin[(4*a)/b])/(4*b^2*c) + (3*CosIntegral[(6*(a + b*ArcSin[c*x
]))/b]*Sin[(6*a)/b])/(16*b^2*c) - (15*Cos[(2*a)/b]*SinIntegral[(2*(a + b*ArcSin[c*x]))/b])/(16*b^2*c) - (3*Cos
[(4*a)/b]*SinIntegral[(4*(a + b*ArcSin[c*x]))/b])/(4*b^2*c) - (3*Cos[(6*a)/b]*SinIntegral[(6*(a + b*ArcSin[c*x
]))/b])/(16*b^2*c)

________________________________________________________________________________________

Rubi [A]  time = 0.399717, antiderivative size = 217, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4659, 4723, 4406, 3303, 3299, 3302} \[ \frac{15 \sin \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{16 b^2 c}+\frac{3 \sin \left (\frac{4 a}{b}\right ) \text{CosIntegral}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right )}{4 b^2 c}+\frac{3 \sin \left (\frac{6 a}{b}\right ) \text{CosIntegral}\left (\frac{6 a}{b}+6 \sin ^{-1}(c x)\right )}{16 b^2 c}-\frac{15 \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{16 b^2 c}-\frac{3 \cos \left (\frac{4 a}{b}\right ) \text{Si}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right )}{4 b^2 c}-\frac{3 \cos \left (\frac{6 a}{b}\right ) \text{Si}\left (\frac{6 a}{b}+6 \sin ^{-1}(c x)\right )}{16 b^2 c}-\frac{\left (1-c^2 x^2\right )^3}{b c \left (a+b \sin ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(1 - c^2*x^2)^(5/2)/(a + b*ArcSin[c*x])^2,x]

[Out]

-((1 - c^2*x^2)^3/(b*c*(a + b*ArcSin[c*x]))) + (15*CosIntegral[(2*a)/b + 2*ArcSin[c*x]]*Sin[(2*a)/b])/(16*b^2*
c) + (3*CosIntegral[(4*a)/b + 4*ArcSin[c*x]]*Sin[(4*a)/b])/(4*b^2*c) + (3*CosIntegral[(6*a)/b + 6*ArcSin[c*x]]
*Sin[(6*a)/b])/(16*b^2*c) - (15*Cos[(2*a)/b]*SinIntegral[(2*a)/b + 2*ArcSin[c*x]])/(16*b^2*c) - (3*Cos[(4*a)/b
]*SinIntegral[(4*a)/b + 4*ArcSin[c*x]])/(4*b^2*c) - (3*Cos[(6*a)/b]*SinIntegral[(6*a)/b + 6*ArcSin[c*x]])/(16*
b^2*c)

Rule 4659

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(Sqrt[1 - c^2*x^2]*
(d + e*x^2)^p*(a + b*ArcSin[c*x])^(n + 1))/(b*c*(n + 1)), x] + Dist[(c*(2*p + 1)*d^IntPart[p]*(d + e*x^2)^Frac
Part[p])/(b*(n + 1)*(1 - c^2*x^2)^FracPart[p]), Int[x*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), x],
 x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^(
m + 1), Subst[Int[(a + b*x)^n*Sin[x]^m*Cos[x]^(2*p + 1), x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n},
x] && EqQ[c^2*d + e, 0] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{\left (1-c^2 x^2\right )^{5/2}}{\left (a+b \sin ^{-1}(c x)\right )^2} \, dx &=-\frac{\left (1-c^2 x^2\right )^3}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac{(6 c) \int \frac{x \left (1-c^2 x^2\right )^2}{a+b \sin ^{-1}(c x)} \, dx}{b}\\ &=-\frac{\left (1-c^2 x^2\right )^3}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac{6 \operatorname{Subst}\left (\int \frac{\cos ^5(x) \sin (x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{b c}\\ &=-\frac{\left (1-c^2 x^2\right )^3}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac{6 \operatorname{Subst}\left (\int \left (\frac{5 \sin (2 x)}{32 (a+b x)}+\frac{\sin (4 x)}{8 (a+b x)}+\frac{\sin (6 x)}{32 (a+b x)}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{b c}\\ &=-\frac{\left (1-c^2 x^2\right )^3}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac{3 \operatorname{Subst}\left (\int \frac{\sin (6 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{16 b c}-\frac{3 \operatorname{Subst}\left (\int \frac{\sin (4 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c}-\frac{15 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{16 b c}\\ &=-\frac{\left (1-c^2 x^2\right )^3}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac{\left (15 \cos \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{16 b c}-\frac{\left (3 \cos \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c}-\frac{\left (3 \cos \left (\frac{6 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{6 a}{b}+6 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{16 b c}+\frac{\left (15 \sin \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{16 b c}+\frac{\left (3 \sin \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c}+\frac{\left (3 \sin \left (\frac{6 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{6 a}{b}+6 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{16 b c}\\ &=-\frac{\left (1-c^2 x^2\right )^3}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac{15 \text{Ci}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right ) \sin \left (\frac{2 a}{b}\right )}{16 b^2 c}+\frac{3 \text{Ci}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right ) \sin \left (\frac{4 a}{b}\right )}{4 b^2 c}+\frac{3 \text{Ci}\left (\frac{6 a}{b}+6 \sin ^{-1}(c x)\right ) \sin \left (\frac{6 a}{b}\right )}{16 b^2 c}-\frac{15 \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sin ^{-1}(c x)\right )}{16 b^2 c}-\frac{3 \cos \left (\frac{4 a}{b}\right ) \text{Si}\left (\frac{4 a}{b}+4 \sin ^{-1}(c x)\right )}{4 b^2 c}-\frac{3 \cos \left (\frac{6 a}{b}\right ) \text{Si}\left (\frac{6 a}{b}+6 \sin ^{-1}(c x)\right )}{16 b^2 c}\\ \end{align*}

Mathematica [A]  time = 0.82457, size = 311, normalized size = 1.43 \[ -\frac{-15 \sin \left (\frac{2 a}{b}\right ) \left (a+b \sin ^{-1}(c x)\right ) \text{CosIntegral}\left (2 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )-12 \sin \left (\frac{4 a}{b}\right ) \left (a+b \sin ^{-1}(c x)\right ) \text{CosIntegral}\left (4 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )-3 a \sin \left (\frac{6 a}{b}\right ) \text{CosIntegral}\left (6 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )-3 b \sin \left (\frac{6 a}{b}\right ) \sin ^{-1}(c x) \text{CosIntegral}\left (6 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+15 a \cos \left (\frac{2 a}{b}\right ) \text{Si}\left (2 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+15 b \cos \left (\frac{2 a}{b}\right ) \sin ^{-1}(c x) \text{Si}\left (2 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+12 a \cos \left (\frac{4 a}{b}\right ) \text{Si}\left (4 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+12 b \cos \left (\frac{4 a}{b}\right ) \sin ^{-1}(c x) \text{Si}\left (4 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+3 a \cos \left (\frac{6 a}{b}\right ) \text{Si}\left (6 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+3 b \cos \left (\frac{6 a}{b}\right ) \sin ^{-1}(c x) \text{Si}\left (6 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )-16 b c^6 x^6+48 b c^4 x^4-48 b c^2 x^2+16 b}{16 b^2 c \left (a+b \sin ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - c^2*x^2)^(5/2)/(a + b*ArcSin[c*x])^2,x]

[Out]

-(16*b - 48*b*c^2*x^2 + 48*b*c^4*x^4 - 16*b*c^6*x^6 - 15*(a + b*ArcSin[c*x])*CosIntegral[2*(a/b + ArcSin[c*x])
]*Sin[(2*a)/b] - 12*(a + b*ArcSin[c*x])*CosIntegral[4*(a/b + ArcSin[c*x])]*Sin[(4*a)/b] - 3*a*CosIntegral[6*(a
/b + ArcSin[c*x])]*Sin[(6*a)/b] - 3*b*ArcSin[c*x]*CosIntegral[6*(a/b + ArcSin[c*x])]*Sin[(6*a)/b] + 15*a*Cos[(
2*a)/b]*SinIntegral[2*(a/b + ArcSin[c*x])] + 15*b*ArcSin[c*x]*Cos[(2*a)/b]*SinIntegral[2*(a/b + ArcSin[c*x])]
+ 12*a*Cos[(4*a)/b]*SinIntegral[4*(a/b + ArcSin[c*x])] + 12*b*ArcSin[c*x]*Cos[(4*a)/b]*SinIntegral[4*(a/b + Ar
cSin[c*x])] + 3*a*Cos[(6*a)/b]*SinIntegral[6*(a/b + ArcSin[c*x])] + 3*b*ArcSin[c*x]*Cos[(6*a)/b]*SinIntegral[6
*(a/b + ArcSin[c*x])])/(16*b^2*c*(a + b*ArcSin[c*x]))

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 364, normalized size = 1.7 \begin{align*} -{\frac{1}{32\,c \left ( a+b\arcsin \left ( cx \right ) \right ){b}^{2}} \left ( 6\,\arcsin \left ( cx \right ){\it Si} \left ( 6\,\arcsin \left ( cx \right ) +6\,{\frac{a}{b}} \right ) \cos \left ( 6\,{\frac{a}{b}} \right ) b-6\,\arcsin \left ( cx \right ){\it Ci} \left ( 6\,\arcsin \left ( cx \right ) +6\,{\frac{a}{b}} \right ) \sin \left ( 6\,{\frac{a}{b}} \right ) b+24\,\arcsin \left ( cx \right ){\it Si} \left ( 4\,\arcsin \left ( cx \right ) +4\,{\frac{a}{b}} \right ) \cos \left ( 4\,{\frac{a}{b}} \right ) b-24\,\arcsin \left ( cx \right ){\it Ci} \left ( 4\,\arcsin \left ( cx \right ) +4\,{\frac{a}{b}} \right ) \sin \left ( 4\,{\frac{a}{b}} \right ) b+30\,\arcsin \left ( cx \right ){\it Si} \left ( 2\,\arcsin \left ( cx \right ) +2\,{\frac{a}{b}} \right ) \cos \left ( 2\,{\frac{a}{b}} \right ) b-30\,\arcsin \left ( cx \right ){\it Ci} \left ( 2\,\arcsin \left ( cx \right ) +2\,{\frac{a}{b}} \right ) \sin \left ( 2\,{\frac{a}{b}} \right ) b+6\,{\it Si} \left ( 6\,\arcsin \left ( cx \right ) +6\,{\frac{a}{b}} \right ) \cos \left ( 6\,{\frac{a}{b}} \right ) a-6\,{\it Ci} \left ( 6\,\arcsin \left ( cx \right ) +6\,{\frac{a}{b}} \right ) \sin \left ( 6\,{\frac{a}{b}} \right ) a+24\,{\it Si} \left ( 4\,\arcsin \left ( cx \right ) +4\,{\frac{a}{b}} \right ) \cos \left ( 4\,{\frac{a}{b}} \right ) a-24\,{\it Ci} \left ( 4\,\arcsin \left ( cx \right ) +4\,{\frac{a}{b}} \right ) \sin \left ( 4\,{\frac{a}{b}} \right ) a+30\,{\it Si} \left ( 2\,\arcsin \left ( cx \right ) +2\,{\frac{a}{b}} \right ) \cos \left ( 2\,{\frac{a}{b}} \right ) a-30\,{\it Ci} \left ( 2\,\arcsin \left ( cx \right ) +2\,{\frac{a}{b}} \right ) \sin \left ( 2\,{\frac{a}{b}} \right ) a+\cos \left ( 6\,\arcsin \left ( cx \right ) \right ) b+6\,\cos \left ( 4\,\arcsin \left ( cx \right ) \right ) b+15\,\cos \left ( 2\,\arcsin \left ( cx \right ) \right ) b+10\,b \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*x^2+1)^(5/2)/(a+b*arcsin(c*x))^2,x)

[Out]

-1/32/c*(6*arcsin(c*x)*Si(6*arcsin(c*x)+6*a/b)*cos(6*a/b)*b-6*arcsin(c*x)*Ci(6*arcsin(c*x)+6*a/b)*sin(6*a/b)*b
+24*arcsin(c*x)*Si(4*arcsin(c*x)+4*a/b)*cos(4*a/b)*b-24*arcsin(c*x)*Ci(4*arcsin(c*x)+4*a/b)*sin(4*a/b)*b+30*ar
csin(c*x)*Si(2*arcsin(c*x)+2*a/b)*cos(2*a/b)*b-30*arcsin(c*x)*Ci(2*arcsin(c*x)+2*a/b)*sin(2*a/b)*b+6*Si(6*arcs
in(c*x)+6*a/b)*cos(6*a/b)*a-6*Ci(6*arcsin(c*x)+6*a/b)*sin(6*a/b)*a+24*Si(4*arcsin(c*x)+4*a/b)*cos(4*a/b)*a-24*
Ci(4*arcsin(c*x)+4*a/b)*sin(4*a/b)*a+30*Si(2*arcsin(c*x)+2*a/b)*cos(2*a/b)*a-30*Ci(2*arcsin(c*x)+2*a/b)*sin(2*
a/b)*a+cos(6*arcsin(c*x))*b+6*cos(4*arcsin(c*x))*b+15*cos(2*arcsin(c*x))*b+10*b)/(a+b*arcsin(c*x))/b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{c^{6} x^{6} - 3 \, c^{4} x^{4} + 3 \, c^{2} x^{2} - 6 \,{\left (b^{2} c \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right ) + a b c\right )} \int \frac{c^{5} x^{5} - 2 \, c^{3} x^{3} + c x}{b^{2} \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right ) + a b}\,{d x} - 1}{b^{2} c \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right ) + a b c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(5/2)/(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

(c^6*x^6 - 3*c^4*x^4 + 3*c^2*x^2 - (b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)*integrate(6*(c^5
*x^5 - 2*c^3*x^3 + c*x)/(b^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b), x) - 1)/(b^2*c*arctan2(c*x, sq
rt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c^{4} x^{4} - 2 \, c^{2} x^{2} + 1\right )} \sqrt{-c^{2} x^{2} + 1}}{b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(5/2)/(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral((c^4*x^4 - 2*c^2*x^2 + 1)*sqrt(-c^2*x^2 + 1)/(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*x**2+1)**(5/2)/(a+b*asin(c*x))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.59521, size = 1882, normalized size = 8.67 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(5/2)/(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

6*b*arcsin(c*x)*cos(a/b)^5*cos_integral(6*a/b + 6*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) - 6*b*ar
csin(c*x)*cos(a/b)^6*sin_integral(6*a/b + 6*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + 6*a*cos(a/b)^5*cos_in
tegral(6*a/b + 6*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) - 6*a*cos(a/b)^6*sin_integral(6*a/b + 6*a
rcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) - 6*b*arcsin(c*x)*cos(a/b)^3*cos_integral(6*a/b + 6*arcsin(c*x))*sin
(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) + 6*b*arcsin(c*x)*cos(a/b)^3*cos_integral(4*a/b + 4*arcsin(c*x))*sin(a/b)/
(b^3*c*arcsin(c*x) + a*b^2*c) + 9*b*arcsin(c*x)*cos(a/b)^4*sin_integral(6*a/b + 6*arcsin(c*x))/(b^3*c*arcsin(c
*x) + a*b^2*c) - 6*b*arcsin(c*x)*cos(a/b)^4*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c)
- 6*a*cos(a/b)^3*cos_integral(6*a/b + 6*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) + 6*a*cos(a/b)^3*c
os_integral(4*a/b + 4*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) + 9*a*cos(a/b)^4*sin_integral(6*a/b
+ 6*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) - 6*a*cos(a/b)^4*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c*arc
sin(c*x) + a*b^2*c) + 9/8*b*arcsin(c*x)*cos(a/b)*cos_integral(6*a/b + 6*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*
x) + a*b^2*c) - 3*b*arcsin(c*x)*cos(a/b)*cos_integral(4*a/b + 4*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b
^2*c) + 15/8*b*arcsin(c*x)*cos(a/b)*cos_integral(2*a/b + 2*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c)
 - 27/8*b*arcsin(c*x)*cos(a/b)^2*sin_integral(6*a/b + 6*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + 6*b*arcsi
n(c*x)*cos(a/b)^2*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) - 15/8*b*arcsin(c*x)*cos(a
/b)^2*sin_integral(2*a/b + 2*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + (c^2*x^2 - 1)^3*b/(b^3*c*arcsin(c*x)
 + a*b^2*c) + 9/8*a*cos(a/b)*cos_integral(6*a/b + 6*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) - 3*a*
cos(a/b)*cos_integral(4*a/b + 4*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) + 15/8*a*cos(a/b)*cos_inte
gral(2*a/b + 2*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) - 27/8*a*cos(a/b)^2*sin_integral(6*a/b + 6*
arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + 6*a*cos(a/b)^2*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c*arcsin(
c*x) + a*b^2*c) - 15/8*a*cos(a/b)^2*sin_integral(2*a/b + 2*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + 3/16*b
*arcsin(c*x)*sin_integral(6*a/b + 6*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) - 3/4*b*arcsin(c*x)*sin_integra
l(4*a/b + 4*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + 15/16*b*arcsin(c*x)*sin_integral(2*a/b + 2*arcsin(c*x
))/(b^3*c*arcsin(c*x) + a*b^2*c) + 3/16*a*sin_integral(6*a/b + 6*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) -
3/4*a*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + 15/16*a*sin_integral(2*a/b + 2*arcsi
n(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c)